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Various truncations for the virial series of a binary fluid mixture of additive hard spheres are
used to analyze the location of the critical consolute point of this system for different size
asymmetries. The effect of uncertainties in the values of the eighth virial coefficients on the
resulting critical constants is assessed. It is also shown that a replacement of the exact virial
coefficients in lieu of the corresponding coefficients in the virial expansion of the analytical
Boublik-Mansoori—Carnahan-Starling-Leland equation of state, which still leads to an ana-
lytical equation of state, may lead to a critical consolute point in the system.
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The virial series was originally introduced by Kammerlingh-Onnes! to
provide a mathematical representation of experimental pressure-density—
temperature data of gases and liquids. If Z = p/pk, T denotes the compres-
sibility factor of the fluid, where p is the pressure, p is the number density,
kg is the Boltzmann constant and T the absolute temperature, the virial
series reads
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Z=1+Y B,p" (1)

n=2

and thus such an expansion accounts for the deviation from ideal gas be-
havior in ascending powers of the density. In Eq. (I) the B, are the virial co-
efficients which for simple fluids depend in general on temperature, while
in the case of fluid mixtures they may depend on both temperature and
composition. It is now well known that this representation for the equation
of state can be derived rigorously in statistical mechanics and that the dif-
ferent virial coefficients are related to intermolecular interactions in a per-
fectly defined way. Unfortunately, irrespective of the intermolecular
potential, the computation of the virial coefficients increases its complexity
enormously as n grows and the radius of convergence of the series in Eq. (1)
is not known. So it is not surprising that there is rather limited information
on these virial coefficients even for the simplest models. Yet, this limited
information has proved to be useful either to test empirical or semi-
empirical proposals for the equation of state of a given system or to derive
such proposals via numerical manipulation (Padé approximants or the like).

In this paper we will consider the demixing problem in a binary fluid
mixture of N = N; + N, additive hard spheres of diameters ¢, and o, (c; >
G,). The thermodynamic properties of the mixture can be described in
terms of the number density (which for this system is given by p = N/V,
with V the volume), the mole fraction of the big spheres x = N,/N, and the
parameter Y = 6,/0; which measures the size asymmetry. The Helmholtz
free energy per particle f= f(p,x,y) for this system reads

f="fia+fex 2

with the ideal contribution f;4 given by
Bfiy =In(PA’) =1+ xInx+(1-x)1In(1-x) 3)

and the excess contribution f,, given by

Bfo = S LB, (x,p" . @

n=1 n
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In the above formulae, § = 1/kgzT plays only the role of a scale factor, A is
the thermal de Broglie wavelength of the particles, and B, ,(x,y) are the
virial coefficients of the mixtures.

In general, one may express the virial coefficients of a binary hard-sphere
mixture as

Bn (XI’Y) = iBn (m,n—m)m| X’” (1_X)n—m (5)

n!

n-m!
where the partial virial (composition-independent) coefficients B, (m,n — m)
(m=0, 1, ... n) have been introduced. Analytical expressions are known for
B,(x,y) 2 and Bs(x,y) 3, while B4(x,y) and up to B,(x,y) have been evaluated
numerically for various size ratios*. Very recently one of the present au-
thors has developed an accurate algorithm to compute virial coefficients up
to Bg(x,y) at a number of size ratios’. The specific values of the partial virial
coefficients B, (m,n — m) with n = 4-8 obtained for y = 0.05, 0.1 and 0.2 are
given in Table I. These most recent results, which apart from providing the
new eighth virial coefficients improve on the numerical values of the lower
ones, will be used later on. A very recent review on virial expansions, in-
cluding an extensive list of references and a description of the difficulties
associated with the computation of higher virial coefficients, has been writ-
ten by Masters!?.

In order to make the paper self-contained, in section Theoretical we will
briefly recall how to determine the critical consolute point in binary
hard-sphere mixtures. This is followed in section Results by the presenta-
tion of the results of our calculations. The paper is closed in section Conclusions
with further discussion of the results and some concluding remarks.

THEORETICAL

One convenient way to study demixing in binary hard-sphere mixtures is
to look at the loss of convexity of the Helmholtz free energy per particle f.
In the present thermodynamic representation, where p and x are the indepen-
dent variables, the condition for the occurrence of a spinodal instability reads

2 £ 52 2 2
rorf _(ff 1o\ _, ©
op® ox*> (dpox pox

In two instances, namely the limiting cases of a pure hard-sphere system
(y=1) and that of a binary mixture in which species two consists of point
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TABLE 1
Partial virial coefficients En(m,n -m) = B,(m,n - m)/c3""Y of binary hard-sphere mixtures

(n = 4-8) with size ratios y = 0.05, 0.1 and 0.2

B, (m,n - m)

y=0.05

vy=0.1

vy=0.2

@ 0 0 0 © 0 W XX N N N NN NNy v o e e e

O NN R W N R NN R WN RO R WN R ORI WN R RW N =

0.1774860579(1) x 10~/
0.428997205793(1) x 107*
0.55363065926(1) x 107!
2.636218

0.22303(9) x 10711
0.780(2) x 1078
0.19493(7) x 107
0.26587(2) x 107!
2.12139(1)

0.2321(3) x 107'%
0.1013(5) x 107!
0.357(1) x 1078
0.9167(6) x 10~
0.13212(2) x 107"
1.56691(1)

0.2200(8) x 10717
0.108(2) x 10715
0.43(2) x 10712
0.165(2) x 1078
0.4397(7) x 107°
0.6705(3) x 1072
1.09916(3)

0.196(3) x 10723
0.134(7) x 10717
0.50(2) x 10710

0.27(4) x 10712

0.81(3) x 107

0.215(1) x 107
0.3441(5) x 1072
0.7394(8)

0.11970915337(1) x 10~
0.404088381846(10) x 107
0.819065784669(1) x 107!
2.636218

0.11808(2) x 1078
0.5512(2) x 107°
0.19596(2) x 1073
0.43514(2) x 107!
2.12139(1)

0.9758(4) x 10712
0.5484(5) x 107
0.2622(2) x 107°
0.9740(3) x 107*
0.23497(3) x 107!
1.56691(1)

0.737(1) x 1071°
0.458(2) x 10712
0.259(2) x 107°
0.1262(3) x 107°
0.4906(4) x 1074
0.12757(6) x 107!
1.09916(3)

0.524(4) x 10718
0.357(6) x 1071°
0.220(7) x 10712
0.124(3) x 107

0.625(5) x 1077
0.2497(9) x 107
0.693(1) x 1072
0.7394(8)

0.84807580776(1) x 107*
0.43324295130(1) x 1072
0.15893702101(1)
2.636218
0.64707(5) x 107°
0.42481(3) x 107*
0.23274(1) x 1072
0.95860(4) x 107!
2.12139(1)
0.42145(10) x 1078
0.32007(9) x 107°
0.21746(4) x 107
0.12596(2) x 1072
0.56988(7) x 107!
1.56691(1)
0.2523(2) x 10719
0.2092(2) x 1078
0.1618(1) x 107°
0.11294(7) x 107*
0.6857(3) x 1073
0.3351(1) x 107!
1.09916(3)
0.1447(6) x 10712
0.1271(5) x 10719
0.1076(5) x 1078
0.847(3) x 1077
0.607(2) x 107
0.3805(8) x 1073
0.1968(5) x 107!
0.7394(8)
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particles (y = 0) there is no fluid—fluid separation'!. In the case of other size
ratios, once v is fixed, the lower critical consolute point, p. and x., should
be found by determining the minimum of the curve obtained from the use
of Eq. (6). However, due to the fact that the virial coefficients beyond the
eighth are unknown, the exact expression for f(p,x,y) is also unknown.
Hence, either one truncates the series in Eq. (4) after the term with n = 8
Or uses an approximate compressibility factor Z,,, (in which case
Bf., = JO ((Z,,, = D/p")dp’) to approximate the true Helmholtz free energy.

As already observed by Vlasov and Masters®, and Lépez de Haro and
Tejero'?, truncation of a virial series (which is equivalent to truncating the
series in Eq. (4)) can produce dramatic effects on the resulting critical be-
havior of the mixture. For instance, the well-known fact that the Boublik—
Mansoori-Carnahan-Starling-Leland (BMCSL) equation of state!®!4 leads
to no demixing should be contrasted with the result that a truncated virial
expansion of the same equation of state leads to a critical consolute point.
In this paper our aim is to gain some insight as to how to make the most
profitable use of the available information on the virial coefficients of bi-
nary hard-sphere mixtures in the study of the demixing problem. For this
purpose, we will initially assess several aspects of the effect of truncated
virial expansions. First, we will truncate the density expansion in Eq. (6) up
to Bg(x,y), compute the critical constants for the truncated series for three
size ratios (y = 0.05, 0.1 and 0.2) and compare with the results of truncating
the virial series of the BMCSL equation of state and the approximation of
Wheatley to the same order!>-2, Since the difficulty in the computation of
virial coefficients increases with the order beyond the eighth, as a second
point we will consider the effect of keeping the first ‘exact’ eight virial coef-
ficients and adding two extra ones Bq(x,y) and B,y(x,y) through either the
BMCSL or the Wheatley approximation. As a third point in this regard, we
will also extend the former calculation adding higher order virial coeftfi-
cients up to B;,(x,y) as obtained from the BMCSL approximation.

As an alternative and complementary route to the preceding analysis, we
will consider a different use of the available virial coefficients of the binary
hard-sphere mixture. Starting from the BMCSL equation of state, we will as-
sess, for the same values of y as before, the effect on the demixing problem
of replacing in this equation the k-th BMCSL virial coefficient by the ‘exact’
one (with 4 < k < 10). In this case the ninth and tenth ‘exact’ virial coeffi-
cients will be those given by the Wheatley approximation while from the
fourth to the eighth we will take the ones computed by Labik and Kolafa’
whose values are reproduced in Table 1. It is worth pointing out that for all
three size ratios considered here, the differences between the ‘exact’ and
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the BMCSL virial coefficients are in the worst of cases of less than five per
cent in the whole range of concentrations. As it will be shown below, the
minor modifications to the BMCSL equation of state that these replace-
ments imply are capable of leading to the presence of a critical consolute
point in the system.

RESULTS

Table II presents the values of the critical constants as obtained from the
truncated virial series by keeping N virial coefficients. Here we have
introduced the critical packing fraction n. = Zp.o;[x. + (1-x.)y’] and the
reduced critical pressure p; =Bp.c; to keep in line with previous work on
this problem. The values in this table up to N = 8 complement the results
obtained in ref.!? for the three size ratios considered in this paper.

One can see from the results that for these size ratios, both the differ-
ences between the ‘exact’ values for the first eight virial coefficients® and
the ones arising either from the BMCSL equation of state or from
Wheatley’s interpolation formula indeed have some influence on the loca-
tion of the critical point. This influence seems to be small relatively speak-
ing, with the BMCSL equation of state giving the worst performance. The
addition of the higher virial coefficients for these size ratios, on the other
hand, has a very strong influence, increasing substantially both the value of
the reduced critical pressure and that of the critical packing fraction.

In Fig. 1 we illustrate the trend observed both for the reduced critical
pressure and packing fraction as one adds one more ‘exact’ virial coefficient
each step to the truncated virial series. No light is thrown by the present re-
sults either on the convergence of the series or on the character (either sta-
ble, metastable with respect to freezing or nonexistent) of demixing in
these binary hard-sphere mixtures. However would the observed trend con-
tinue whenever higher virial coefficients become available, and so far this
has proved to be the case, it would strongly suggest that demixing does not
occur in these systems.

Once we have dealt with various aspects of truncated virial series, now we
address the question of whether a different use of the available virial coefti-
cients may also tell us something about the demixing problem. Let us recall
that the BMCSL compressibility factor is given by

1,88 3 & n'B-n

2 2 3 (7)
I-n & (1A-m° & (1-mn

Zgnicst (n =
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where, for ease of presentation, we have written it in terms of the packing
fraction = Zpo;[x+ (1-x)y’] and the moments &, =o][x+(1-xy"] (n=1,
2, 3) instead of in terms of p, x and y which will nevertheless remain as our
chosen thermodynamic variables. In turn, the excess Helmholtz free energy
per particle corresponding to the BMCSL equation of state reads

BMCSL _ _ £.&, 3n § il _
B = 1w+ 522 Ll_mz +In1 n)} ®)

so that the approximate Helmholtz free energy per particle used in connec-
tion with Eq. (6) reads

M max 1 "
Bfapp = Bfid + BfeiMCSL + ZZ(BW-I - BSEAICSL )p (9)
n=3

Npax Deing successively 3, 4, 5, 6, 7, 8 and 9. In Table II, we present the criti-
cal constants computed using the Helmholtz free energy per particle given
in Eq. (9). It must be pointed out here that, contrary to what happens in
the case of truncated virial expansions, the solution of Eq. (6) in this in-
stance is not single valued. However, we have checked that the one we have

0.7+ .

0.6

0.5 o
770
04+ A .

0.3

02 1 R L R I A I . L
0 100 200 300 400
p

Cc

FiG. 1
Critical packing fraction n. vs reduced critical pressure p; in binary hard-sphere mixtures of
different size ratios y as computed from truncated virial expansions keeping successively 2-8
‘exact’ virial coefficients. y = 0.05 (H), 0.1 (A), 0.2 (O)
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chosen corresponds to the minimum of the free energy. What one immedi-
ately notices from Table III is that for the smallest size ratio that we have
considered in this paper (y = 0.05) already the replacement of the ‘exact’
fourth virial coefficient in the BMCSL equation of state produces demixing.
This has been confirmed independently by Kolafa?! using his NSK software
package. For the other two size ratios we also get demixing, but it requires
the replacement of both the fourth and the fifth virial coefficients in the
case of y = 0.1 and of the fourth, fifth and sixth virial coefficients in the
case of y=0.2. All the critical constants increase their value as one replaces
more ‘exact’ virial coefficients and the growth seems to be diminishing
each time, but no convergence may be ascertained at this stage.

CONCLUSIONS

The results of the previous section deserve further consideration. To begin
with, we find that the location of the critical consolute point of a binary
hard-sphere fluid mixture as derived from the truncated virial series is in-
deed sensitive to small variations in the values of the first eight virial coeffi-
cients, some of which have to be obtained numerically and are therefore
subject to errors. This might explain why, as exhibited in ref.!?, different
equations of state that are reasonably accurate when compared to simula-
tion data, but differ in their estimates for B, (x,y) for n > 4, lead to quite dif-
ferent predictions for the critical constants. While our results based on the
truncated virial series suggest that eventually demixing will not occur for
the size ratios we have considered, a deeper assessment is precluded at this
stage and in this respect at least must await the determination of still higher
virial coefficients or the knowledge of the convergence properties of the
virial series to either confirm or reject this suggestion.

As for the replacement of BMCSL virial coefficients with ‘exact’ ones, it is
clear that a minor correction to this very accurate equation of state can pro-
duce a radically different critical behavior. Unfortunately, the rate of con-
vergence is rather slow, so one cannot conclude anything solid on the
grounds of these results alone. However, the extremely high values of the
reduced critical pressure that we have obtained are probably an indication
that if demixing occurs in these mixtures it will be probably metastable
with respect to a freezing transition. However, further work is required
again before the problem gets settled.
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